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Abstract. Cryosurgery is a technique to eradicate abnormal biological tissues by freezing. The objective of cryosurgery is to
maximize cryoinjury of tumor tissues while at the same time minimizing cryoinjury to the surrounding healthy tissues. The
location and number of cryoprobes are important factors to obtain optimal cryosurgery in complex-shaped tumors. This paper
presents multiprobe cryosurgery simulation with optimal cryoprobes location in target region. Bubble packing method is used
to obtain optimal cryoprobes layout. We consider mathematical model of freezing by bioheat transfer equation in solid (frozen
tissue), liquid (unfrozen tissue), and mushy region. This model is referred to as Stefan problem where the location of moving
solid-mushy or mushy-liquid interface is not known and it is as part of the solution. We reformulate the bioheat equations into
single enthalpy (energy) equation which can resolve the moving boundary between two phases. The first-order of Godunov
method is adopted to obtain numerical solution of the phase change problem. This method is easily applied since we only
solve one governing equation regardless the moving interface between two phases. For demonstration purposes, multiprobe
cryosurgery for lung cancer case with complex geometry is simulated and interpreted. The numerical simulation for three to
ten cryoprobes configuration shows that the nine cryoprobes layout has the smallest total defect in this case. The numerical
results provide an important information for cryosurgeon before conducting effective cryosurgery protocol.

Keywords: Godunov method; Multiprobe cryosurgery; Bubble packing, Stefan problem; Enthalpy formulation; Numerical simulation
PACS: 02.60.Cb, 02.70.Bf

INTRODUCTION

Cancer has become one of the most frightening disease in the world. Each year globally, million of people died because
of cancer. According to the world health organization (WHO), in 2012, about 8.2 million people died from cancer with
1.59 million of which caused by lung cancer. There are several medical treatments to cure cancer, among others
are chemotherapy, radiotherapy, surgery, or combination of these three methods. Cryosurgery is one of the surgical
technique to destroy tumor tissues by inserting extremely cold temperature into tumor area through a device called
cryoprobe. Cryosurgery is formerly developed for single probe. However, due to the complex geometry of tumors,
cryosurgery is developed to multiple cryoprobes [1]. In multiprobe cryosurgery problem, the number of cryoprobes
used and where to place them into the tumor area are important factors to perform a successful cryosurgery.

The multiprobe cryosurgery procedure can be described as follows. At first, extremely cold temperature which
usually provided by liquid nitrogen with temperature −196 ◦C is inserted into a predefined target region (illustrated in
Fig. 1) through a number of cryoprobes. We assume that at initial, all biological tissues are in liquid phase. However,
due to very low-temperature, the region surrounding each cryoprobe forms ice balls. As a result, biological tissue is
divided into two regions, namely solid and liquid region. At certain time, the ice balls will merge to form a single
ice region which eventually covers the whole target region. Tumors tissue will be damaged if the area of ice has
temperature between 0◦C and −45 ◦C [2]. The objective of the cryosurgery procedure is to maximize cryoinjury of
tumor tissues, while at the same time the surrounding healthy tissue damage is minimized.

There have been several numerical simulations to achieve the objective of cryosurgery. Rossi et al. [2, 3] developed
computerized planning tools for multiprobe cryosurgery of prostate tumor. They used bubble packing method and
force-field analogy to obtain optimal layout of cryoprobes position. The numerical method used in their numerical
simulation was finite difference method and the numerical results were validated by experimental data of phantom
material. It showed that the freezing front location from the simulation only differs 0.8 mm from the experimental
data. Lung et. al [4] also used force-field analogy to obtain the optimal position of cryoprobes. They showed that
this method more efficient than traditional numerical optimization technique. The other techniques for optimizing
cryoprobes layout can be found in [5, 6, 7]. Moreover, Chua [1] conducted multiprobe cryosurgery simulation for liver
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FIGURE 1. Configuration of human lung cancer cryosurgery where the highlighted area is the domain of simulation. Area of
lung cancer and healthy left lung are 18.988 cm2 and 334.605 cm2 respectively.

tumors with irregularly geometry. But, in the simulation, the cryoprobes position was not optimized. However, the
numerical results showed good agreement of up to 5.8% with experimental data. Furthermore, Kumar [8] developed
3D model to study the effect of central probe on the multiprobe cryosurgery process while Wan et. al [9] used finite
element model to simulate ice ball evolution in multiprobe cryosurgery.

The mathematical model of cryosurgery process consists of heat transfer in frozen tissue (solid phase), unfrozen
tissue (liquid phase), and conservation of energy at mushy region. The mushy region is portion of the area of biological
tissue where the phase is in neither solid nor liquid. The governing equation in solid region is derived from heat
conduction whereas in liquid region is represented by classical Pennes bioheat transfer equation [10]. This problem is
referred to as Stefan problem—i.e. a free boundary problem where boundary between solid-mushy and mushy-liquid
move as function of time. There have been many methods developed to solve the Stefan problems, including boundary
immobilization method, perturbation method, nodal integral method, heat balance integral method, and enthalpy
method. The comparative studies of these methods can be found in [11, 12]. The boundary immobilization method
can effectively remove the moving boundary, but unfortunately it needs to solve more complicated equation. In the
perturbation method, the position of moving boundary can be transformed into ordinary differential equation but it is
hard to solve numerically and it requires symbolics computation. Further, the nodal integral method gives better results
but only for small number of interval. The heat balance integral method can produces good results if the boundary
conditions are constant but it become more difficult for time-dependent problems. The simple technique that most
widely used to solve Stefan problems is enthalpy method [13, 14, 15]. The enthalpy method works by reformulating
heat conduction equations in each phase region into single enthalpy (energy) equation. By this formulation, the
governing equation is the same regardless the phases so that the standard numerical method for conservation energy
such as Godunov method can be easily applied [16].

In this paper, we propose first-order Godunov method to simulate multiprobe cryosurgery with complex-shaped
tumors. More detail about Godunov method can be found in [17]. Here, the bubble packing method is adopted to
search optimal cryoprobes location. The numerical simulations for multiprobe lung cancer cryosurgery are conducted
for three to ten optimal cryoprobes position.

MATHEMATICAL FORMULATION

Let Ω ∈ R2 denotes tissues region which consists of healthy and tumor tissues. At initial, whole tissues region are in
liquid phase. When a number of cryoprobes is inserted into target area, tumor tissues begin to freeze so that there is
change of phase from liquid to solid. Let ΩS and ΩL be solid and liquid phase region respectively and Ωi is mushy
region that separated solid and liquid region. Temperature at position x = (x,y) ∈ R2 and time t is denoted by T (x, t).
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Heat conduction equation in frozen tissues (solid phase) may be expressed as

ρScS
∂TS(x, t)

∂ t
= kS

(
∂ 2TS(x, t)

∂x2
+

∂ 2TS(x, t)
∂y2

)
, x ∈ ΩS, (1)

where ρS, cS, and kS are density, specific heat, and thermal conductivity of frozen tissue respectively. Further, due to
the presence of blood perfusion and metabolic rate in unfrozen tissues (liquid phase), the heat conduction equation is
represented as Pennes bioheat transfer equation [10]:

ρLcL
∂TL(x, t)

∂ t
= kL

(
∂ 2TL(x, t)

∂x2
+

∂ 2TL(x, t)
∂y2

)
+ ωb ρb cb [Tb −TL(x, t)]+Qm, x ∈ ΩL, (2)

where ρL, cL, and kL are density, specific heat, and thermal conductivity of unfrozen tissue respectively. Moreover,
ωb, ρb, cb, Tb, and Qm are perfusion, density, specific heat, temperature, and metabolic heat generation of blood
respectively. More discussion about the Pennes bioheat transfer can be found in [18, 19, 20].

The condition at mushy region follows [1]:

ρici
∂Ti(x, t)

∂ t
= ki

(
∂ 2Ti(x, t)

∂x2
+

∂ 2Ti(x, t)
∂y2

)
+ ωb ρb cb [Tb −Ti(x, t)]+Qm +ρiL

d fs

dt
, x ∈ Ωi, (3)

where ρi, ci, and ki are density, specific heat, and thermal conductivity of tissue in mushy region respectively and L is
latent heat of fusion. Here, fs is solid fraction during phase change:

fs =

⎧⎪⎨
⎪⎩

0, T (x, t) = Tml ,
1, T (x, t) = Tms,
T (x, t)−Tml

Tms −Tml
, Tms < T (x, t)< Tml ,

(4)

where Tms and Tml are solidus and liquidus temperature, respectively. For the simplicity of the computation, we assume
ρ = ρS = ρL = ρi.

Boundary conditions at the interface between solid and mushy region can be written as

T (x, t) = Tms, x ∈ Γm(t) (5)

ks∇TS(x, t) ·ns = ki∇Ti(x, t) ·ns, x ∈ Γm(t) (6)

where ns is the unit normal vector to solid-mushy region interface and Γm(t) denotes moving boundary. Moreover,
boundary conditions at the interface between mushy and liquid region are given by

T (x, t) = Tml , x ∈ Γm(t) (7)

ki∇Ti(x, t) ·nl = kL∇TL(x, t) ·nl , x ∈ Γm(t) (8)

where nl is the unit normal vector to mushy-liquid region interface. The equation (1) – (8) are mathematically referred
to as Stefan problem.

COMPUTATIONAL METHODS

In this section, the first-order of Godunov method is presented in brief. Besides, we formulate minimization of total
defect to measure effectiveness of cryosurgery process. At the end of this section, the bubble packing method is briefly
discussed.

Godunov Method

Interface position of solid-mushy and mushy-liquid region at each time is a priori unknown. As consequence, the
equation (1) – (8) can not be directly solved. A technique to solve such problem is to transform the heat conduction
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FIGURE 2. Control volume Vi j in 2D domain.

equations of solid, liquid, and mushy region into enthalpy equation. In the enthalpy form, the interface between solid-
mushy and mushy-liquid region is no longer taken into account in computation so that the numerical scheme in term
energy conservation such as Godunov method can be easily applied.

Suppose E(x, t) denotes the enthalpy per unit area at position x and time t, the sum of sensible and latent latent can
be written as [21, 22]

E(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρcS [T (x, t)−Tms] , T (x, t)< Tms (solid region),

ρ
(

1
2 (cs + cl)+

L
Tml −Tms

)
[T (x, t)−Tms] , Tms ≤ T (x, t)≤ Tml (mushy region),

ρL+ 1
2 ρ (cs + cl)(Tml −Tms)+ρcl [T (x, t)−Tml ] , T (x, t)> Tml (liquid region).

(9)

The Godunov method for solving the Stefan problem can be briefly described as follows [16]. At first, we discretize
the domain of simulation by finite volume discretization. Let 0 ≤ x ≤ l1, 0 ≤ y ≤ l2 be two-dimensional domain of
biological tissue, in this case, l1 = l2 = 0.1 m. The domain [0, l1] and [0, l2] are divided into M1 and M2 subintervals
respectively with length of subinterval Δx = l1/M1 and Δy = l2/M2. Area inside Vi, j = [xi−1/2,xi+1/2]× [y j−1/2,y j+1/2]
is defined as control volume (illustrated in Fig. 2) where xi−1/2 is a node between xi−1 and xi. Thus, there are M1M2

control volumes. The conservation of energy in each control volume Vi, j can be expressed as

∫
Vi, j

[E(x, t +Δt)−E(x, t)]dA =
∫ t+Δt

t

∫
∂Vi, j

−q · n̂ dSdt, (10)

where −q · n̂ is heat flux into the area Vi, j across its boundary ∂Vi, j, n̂ being the outgoing unit normal to ∂Vi, j.
The explicit scheme in two-dimensional domain of (10) based on Godunov method is

En+1
i, j = En

i, j +
Δt
Δx

[
qn

i−1/2, j −qn
i+1/2, j

]
+

Δt
Δy

[
qn

i, j−1/2 −qn
i, j+1/2

]
+Δt ωb ρb cb

[
Tb −T n

i, j
]
+Δt Qm, (11)

where

qi−1/2, j =
Ti−1, j −Ti, j

Ri−1/2, j
, Ri−1/2, j =

Δx
2

(
1

ki−1, j
+

1

ki, j

)
, qi, j−1/2 =

Ti, j−1 −Ti, j

Ri, j−1/2

, Ri, j−1/2 =
Δy
2

(
1

ki, j−1
+

1

ki, j

)
. (12)
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Temperature in each control volume Vi, j is obtained by substituting (9) into (11) and reformulating the equation into
enthalpy term—viz.

T n+1
i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tms +
En+1

i, j

ρcs
, En+1

i, j < 0

Tms +
En+1

i, j

1
2 ρ(cs + cl)+

ρL
Tml −Tms

, 0 ≤ En+1
i, j ≤ ρL+ 1

2 ρ(cs + cl)(Tml −Tms)

Tml +
En+1

i, j −ρL− 1
2 ρ(cs + cl)(Tml −Tms)

ρcl
, En+1

i, j > ρL+ 1
2 ρ(cs + cl)(Tml −Tms).

(13)

The analytical solution of (1) – (8) is available for one-dimensional case but without involving blood perfusion
and metabolic heat generation. In our previous works [16], we calculated the error of Godunov scheme against its
analytical solution. It revealed that the numerical solution of one-dimensional Stefan problem using Godunov method
confirmed the analytical solution.

Since the explicit scheme is used for time integration, the numerical method is conditionally stable. The stability of
internal nodes of (11) but without perfusion and heat generation of blood term can briefly be derived as follows. We
assume that there is only plain heat conduction occurs in the domain of interest or we can say that the energy is simply
the sensible heat. As consequence, the specific heat is independent of temperature, so that instead of (9), the energy
term in control volume Vi, j can be written as

En
i, j = ρc j

(
T n

i, j −Tre f
)
, (14)

where Tre f being some convenient reference temperature.
Let suppose the thermal conductivity and specific heat are constant, k j = k, c j = c. Now, substitute (12) and (14)

into (11), yields

T n+1
i, j = T n

i, j +
αΔt
Δx2

(
T n

i−1, j −2T n
i, j +T n

i+1, j
)
+

αΔt
Δy2

(
T n

i, j−1 −2T n
i, j +T n

i, j+1

)
(15)

where α = k/(ρc). Without loss of generality, we assume Δx = Δy and

μ =
αΔt
Δx2

, (16)

then (15) may be written as

T n+1
i, j = (1−4μ)T n

i, j +2μ
(
T n

i−1, j +T n
i+1, j +T n

i, j−1 +T n
i, j+1

)
. (17)

The condition for stability is that 1−4μ ≥ 0, known as the Courant-Friedrichs-Lewy (CFL) conditions:

Δt ≤ 1

4

Δx2

α
. (18)

Furthermore, since Δx and Δy may be different in the computation and in our case the value of α depends on phases,
then (18) may be written as

Δt ≤ 1

4

min
{

Δx2,Δy2
}

αmax
, αmax = max

{
ks

ρscs
,

kl

ρlcl

}
. (19)

Minimization of Defect Region

We know that the aim of cryosurgery is to maximize cryoinjury of target region while minimizing the destruction
of healthy tissues. For demonstration purposes, we assume that to ensure tumors ablation, the temperatures must be
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FIGURE 3. Multiprobe cryosurgery planning algorithm using bubble packing method for optimizing cryoprobes position and
Godunov method for the solution of Stefan problem: N is the number of cryoprobes, N = 3,4, ...,Nmax; Nmax = 10 is the maximum
number of cryoprobes being tested; Gp is the objective function given in (20) at time level p; Gmin,current is the minimum of defect
function calculated up to time level p; Gmin,overall is the minimum of defect function from all cryoprobes configurations.

below −22◦C [3]. Now the objective is to lower temperature of entire tumors area below −22◦C while resisting the
temperature of surrounding healthy tissues above this temperature. In other words, the objective is to minimize area
inside target region where the temperature is above −22◦C and also minimize area outside target region where the
temperature is below −22◦C. If we define internal defect is area inside target region that has temperatures above
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−22◦C and external defect is area outside target region that has temperature below −22◦C then the objective function
can be formulated as [3]:

G =
∫

A
wdA; w =

⎧⎪⎨
⎪⎩

1, −22 ◦C < T interior to the target region
0, T ≤−22 ◦C interior to the target region
1, T ≤−22 ◦C exterior to the target region
0, −22 ◦C < T exterior to the target region,

(20)

where G is called defect function and A is area of the domain under consideration. This leads us to minimization
problem—i.e. minimizing the defect function.

Bubble Packing Method

Bubble packing is a method to search an even distribution of a number of objects into a domain with a specific
geometry. As an example, the bubble packing is used as mesh generation in finite element analysis. More discussion
about the bubble packing method can be found in [23]. In this study, bubble packing is used to search an optimal
position of a number of cryoprobes that will minimize total defect region in (20). Suppose that there is a number of
2D bubbles with the center point of x = (x j,y j). Each bubble inside the domain moves following the van der Waals-
like force. The bubbles motion consist of attraction and repulsion force, where the attraction force occurs when two
bubbles have great distance while the repulsion force occurs when two bubbles have short enough distance. The van
der Waals-like force between two bubbles is given by [24]

f (λ ) =
{

k0

(
5
4 λ 3 − 19

8 λ 2 + 9
8

)
, 0 ≤ λ ≤ 1.5

0, λ > 0,
(21)

where λ is the ratio between the actual distance to the desired distance between two bubbles, and k0 is parameter to
scale force value.

In the computation, we consider fix and free bubbles. Fix bubbles are dummy bubbles which are placed at boundary
of domain and it can not move while free bubbles move according to van der Waals force. The dummy bubbles are
created to prevent free bubbles moves outside the domain. Further, The equation of motion for the bubble system is
given by Newton’s 2nd Law:

m
d2xi(t)

dt2
+ c

dxi(t)
dt

= Fi(t) (22)

where m is mass, c is damping coefficient, and Fi is the resultant force exerted on the ith bubble. Moreover, equation
(22) can be solved by reformulating it to a system of first-order ordinary differential equation and numerically solved by
the fourth-order of Runge-Kutta method. The equation is iterated until stable bubbles position is attained. The number
of iterations for a number of bubbles depends on selection of physical parameter such as mass, damping coefficient,
force value, and initial distance of inter bubble position. The multiprobe cryosurgery planning algorithm using bubble
packing method for optimizing cryoprobes position and Godunov method for the solution of Stefan problem is shown
in the flow chart in Fig. 3.

RESULTS AND DISCUSSION

Here, we discuss optimal cryoprobes position obtained from bubble packing method. These optimal positions are used
to calculate total defect of target region. We also analyze and interpret the numerical results of multiprobe cryosurgery
simulation for three to ten cryorprobes configuration.

Optimal Cryoprobes Position

Before performing cryosurgery using several cryoprobes, the position of the cryoprobes need to be determined
by cryosurgeon. Here, bubble packing method is used to obtain optimal cryoprobes position that will maximize the
cancerous tissue damage, but minimizing healthy tissue damage. In this study, numerical simulation to obtain the
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TABLE 1. Number of iteration for given
initial bubbles position with diameter of bub-
bles.

Number of
bubbles

Diameter of
bubbles (m)

Number of
iterations

3 0.0210 132
4 0.0185 5882
5 0.0160 937
6 0.0149 21797
7 0.0147 5444
8 0.0147 6869
9 0.0130 21329
10 0.0126 4317

0.16

0.18

0.20

0.22

0.24

y 
(m

)

3 bubbles 4 bubbles 5 bubbles 6 bubbles

0.16

0.18

0.20

0.22

0.24

0.32 0.34 0.36 0.38 0.4

y 
(m

)

x (m)

7 bubbles

0.32 0.34 0.36 0.38 0.4
x (m)

8 bubbles

0.32 0.34 0.36 0.38 0.4
x (m)

9 bubbles

0.32 0.34 0.36 0.38 0.4
x (m)

10 bubbles

FIGURE 4. Optimal bubbles position using bubble packing method.

optimal location is performed for three to ten cryoprobes. Table 1 shows the simulation results for the number of
iterations and the diameter of each bubble using bubble packing method. It can be seen that the fewest iteration
is obtained for three bubbles—i.e. 132 iterations while the most iteration is obtained for six bubbles—i.e. 21797
iterations. The number of iterations is mostly determined by the initial bubbles position and diameter of bubbles. If
the initial bubbles position is stable enough then the number of iterations will be less. In contrast, if the initial bubbles
position is very unstable, the number of iterations will be more and more. The bubble diameters are used in this bubble
packing simulation should be adjusted so that the combined area of bubbles as widely as possible but still within the
target region.

The position of stable bubbles obtained from the simulation is displayed by Fig. 4. As can be seen from the figure,
the bubbles are allowed to overlap with a certain ratio with the aim of reducing areas that are not covered by bubbles.
Furthermore, the position of the center of the stable bubbles is used as the optimal position of cryoprobes in cryosurgery
simulation.
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TABLE 2. Thermal properties of tissues and blood [21].

Symbol Parameter Value Unit

cs specific heat of frozen tumor tissue 1.23 kJ/kg/◦C
cl specific heat of unfrozen tumor tissue 4.2 kJ/kg/◦C
cb specific heat of blood 3.64 kJ/kg/◦C

ks thermal conductivity of frozen tumor tissue 2.25 ·10−3 kJ/m/s/◦C

kl thermal conductivity of unfrozen tumor tissue 0.55 ·10−3 kJ/m/s/◦C
Tml liquidus temperature -1 ◦C
Tms solidus temperature -8 ◦C
L latent heat 333 kJ/kg

ρ density of tumor tissue 1000 kg/m3

ρb density of blood 1000 kg/m3

Qm metabolic heat generation in tumor 42 kJ/s/m3

ωb blood perfusion in tumor 0.002 ml/s/ml
Tb temperature of blood 37 ◦C
T0 initial temperature 37 ◦C

Tprobe temperature of cryoprobes -196 ◦C

TABLE 3. Time needed for −22◦C isotherm curve to reach healthy tissues boundary.

Number of
cryorobes ts (s) A22 (cm2) Internal defect (cm2) Internal defect (%)

3 126.54 9.918 9.070 47.77
4 99.54 11.423 7.565 39.84
5 98.60 13.323 5.665 29.83
6 57.36 11.340 7.648 40.28
7 53.15 12.233 6.755 35.58
8 55.68 14.377 4.611 24.28
9 60.74 16.162 2.851 15.01

10 37.12 14.339 4.649 24.48

Multiprobe Cryosurgery Simulation

All parameters used in the multiprobe cryosurgery simulation are summarized in Table 2. Domain of the simulation
is illustrated in Fig. 1. To obtain accurate results, we consider very small length of subinterval—i.e. Δx = Δy =
0.0195313 cm. Following the stable criterion in (19), we select Δt = 0.00421793 seconds. At initial, the temperature of
both biological tissues and blood is 37 ◦C. We set up all cryoprobes used in this cryosurgery simulation have the same
diameter namely 3 mm. In fact, in real cryosurgery, a cryosurgeon might use combination of several cryoprobes with
different diameter. In this simulation, we also assume that there is no change of density during phase transition which
results no volume expansion. Cryosurgery process begins when a number of cryoprobes which carry liquid nitrogen
with a temperature of −196◦C is inserted into the target region. Then, the temperature surrounding cryoprobes is
gradually decreasing until below −22◦C which means that the tumor tissues is damaged. Temperature distribution
in biological tissues is calculated by (13) while the −22◦C isotherm curve is computed by plotting the contour of
T (x,y) =−22◦C.

Suppose ts is the time required by −22◦C isotherm curve to touch the safety boundary of the healthy tissues for the
first time. This variable is calculated to determine which cryoprobes layout that give optimal result. The value of ts for
a number of cryoprobes are listed in Table 4. The table shows that if the cryosurgery is terminated before ts then there
will be no healthy tissue damage or in other words if the cryosurgery process is continued exceed ts then there is a part
of healthy tissue damage. Further, we can see that the nine cryoprobes layout have 15.01% of internal defect which
is the smallest one than other cryoprobes configuration. Therefore, if a cryosurgeon desires maximum tumor damage
without healthy tissues damage then the cryosurgeon should use nine cryoprobes configuration and must terminate the
cryosurgery at 60.74 seconds.

As previously discussed that before performing cryosurgery, it is important to consider how many cryoprobes to be
used and where the cryoprobes should be inserted into the target region. In addition, the temperature distribution in the
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FIGURE 5. Area of total defect with its percentage to target region at t = 82.67 seconds.

target region and healthy tissue should be analyzed to determine the deployment of heat in the biological tissues. The
temperature distribution and −22◦C isotherm curve for multiprobe configurations at t = 82.67 seconds are presented
in Fig. 6. From that figure, it can be seen that for the three, four, and five cryoprobes configuration, there is no external
defect. However, for other cryoprobe configurations, it can be roughly seen that there is increasingly external defect
by the decreasing of internal defect. To obtain accurate numerical results, we need to calculate the area of total defect
in each cryoprobes configuration.

Area of total defect in the cryosurgery simulation for three to ten cryoprobes configuration is calculated. The
simulation for these several configurations are conducted by setting up the same termination time namely 82.67
seconds. Total defect is obtained by previously calculating the area of tissues inside −22◦C isotherm curve (denoted
by A22). The cryoprobe configuration that has the smallest total defect is an optimal cryosurgery process. Table 4
displays internal, external, and total defect of all cryoprobes configuration at t = 82.67 seconds. As can be seen from
the table, the internal defect is decreasing with the increment of number of cryoprobes. This is the expected result
from our numerical simulation. Moreover, by the increment of number of cryoprobes, the external defect is constantly
increasing which is undesired result. But, with complex-shaped geometry of target region is almost impossible to have
zero or decreasingly external defect. However, because of decreasingly the internal defect and increasingly the external
defect, the total defect could be has minimum with the number of cryprobes is less than ten. Figure 5 reveals the area of
total defect with its percentage to a target region for a number of cryoprobes at t = 82.67 seconds. As can be seen that
the curve in Fig. 5 tends to decrease except at ten cryoprobes. Total defect of ten cryoprobes configuration is 8.53%
which is larger than nine cryoprobes configuration (8.25%). Therefore, from this simulation results, it can be said that
the optimal lung cancer cryosurgery in this case would be the nine cryoprobes configuration. However, these results
depend on the initial bubbles configuration in bubble packing method since with other initial bubbles configurations it
might be resulting different results that more optimal.

From the simulation results, we obtain that configuration of nine cryoprobes produces minimum total defect.
Figure 7 depicts temperature distribution and evolution of −22◦C isotherm curve for nine cryoprobes. As can be
seen from the figure, at the time t = 10.12 seconds, several ice balls are formed from each probes inserted into the
target region. The ice balls have begun to merge to form a single ice region when the diameter of each ice balls reaches
approximately 1.26 cm and this occurs at t = 20.25 seconds. Moreover, at the time t = 60.74 seconds, the −22◦C
isotherm curve touches the safety boundary of healthy tissue with internal defect of 15.01%. If it is desired the healthy
tissues have 0% damage then the cryosurgery process can be stopped at this time but there is still risk about 15.01%
of tumor tissues which has not been destroyed. At t = 82.67 seconds, the nine cryoprobes configuration has internal
defect of 5.95% and external defects of 2.30%. To prevent excessive damage to healthy tissue, a cryosurgeon could
decide that cryosurgery should be discontinued at t = 82.67 seconds with 5.95% of tumor tissues has not died. It
may be decided by cryosurgeon that the rest 5.95% of tumor tissues can be destroyed in the next other cryosurgery
planning.

060002-10 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

103.233.100.3 On: Mon, 29 Feb 2016 04:46:36



0.16

0.18

0.20

0.22

0.24
3 probes

0.16

0.18

0.20

0.22

0.24
3 probes

−22oC isotherm
0.16

0.18

0.20

0.22

0.24
3 probes 4 probes4 probes

−22oC isotherm

4 probes 5 probes5 probes

−22oC isotherm

5 probes 6 probes

−200

−150

−100

−50

 0

 50

 100
6 probes

−22oC isotherm

6 probes

0.16

0.18

0.20

0.22

0.24

0.32 0.34 0.36 0.38 0.4

7 probes

0.16

0.18

0.20

0.22

0.24

0.32 0.34 0.36 0.38 0.4

7 probes

−22oC isotherm
0.16

0.18

0.20

0.22

0.24

0.32 0.34 0.36 0.38 0.4

7 probes

0.32 0.34 0.36 0.38 0.4

8 probes

0.32 0.34 0.36 0.38 0.4

8 probes

−22oC isotherm

0.32 0.34 0.36 0.38 0.4

8 probes

0.32 0.34 0.36 0.38 0.4

9 probes

0.32 0.34 0.36 0.38 0.4

9 probes

−22oC isotherm

0.32 0.34 0.36 0.38 0.4

9 probes

0.32 0.34 0.36 0.38 0.4

10 probes

−200

−150

−100

−50

 0

 50

 100

0.32 0.34 0.36 0.38 0.4

10 probes

−22oC isotherm

0.32 0.34 0.36 0.38 0.4

10 probes

FIGURE 6. Temperature distribution and −22◦C isotherm curve of multiprobe cryosurgery at t = 82.67 seconds. Image order
from top left to bottom right: multiprobe cryosurgery using 3, 4, ... , and 10 cryoprobes.
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FIGURE 7. Temperature distribution and −22◦C isotherm of multiprobe cryosurgery using 9 cryoprobes. Image order from top
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CONCLUSION

Multiprobe cryosurgery with complex-shaped tumors has been successfully simulated using Godunov method where
the optimal cryoprobes configuration obtained from stable bubbles position of bubble packing method. Total defect of
target region for three to ten optimal cryoprobes layout has been analyzed to find maximum cryoinjury of tumor tissue

060002-11 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

103.233.100.3 On: Mon, 29 Feb 2016 04:46:36



TABLE 4. Numerical results of 2D cryosurgery simulation at t = 82.67 seconds where A22 is area of
tissues that have temperature below −22◦C.

Number of
cryorobes A22 (cm2) Internal defect (cm2) External defect (cm2) Total defect (cm2)

3 6.238 12.750 0.000 12.750
4 10.273 8.715 0.000 8.715
5 12.025 6.963 0.000 6.963
6 14.086 4.921 0.019 4.940
7 15.283 3.850 0.145 3.995
8 17.204 1.930 0.146 2.076
9 18.295 1.130 0.436 1.566

10 19.364 0.622 0.998 1.620

and minimum healthy tissue damage. It has be shown that the nine cryoprobes configuration has the smallest total
defect about 8.25% for cryosurgery duration 82.67 seconds. Further, time needed for −22◦C isotherm to reach safety
boundary of healthy tissues depends on cryoprobes position and degree of complex geometry of target region. For the
nine cryoprobes, time required for a surgeon to conduct cryosurgery with maximum tumor damage (approximately
84.95%) but without healthy tissues damage is 60.74 seconds. However, if the cryosurgeon desires to take risk,
the cryosurgery may be continued until 82.67 seconds with cryoinjury of tumor tissues about 94.05% and healthy
tissues damage approximately 2.30%. These numerical results are highly suggested to be considered in multiprobe
cryosurgery planning so that the objective of cryosurgery can be achieved. Suggestion to future research is to develop
multiprobe cryosurgery simulation using real cancer geometry and combination of different cryoprobes diameter. To
obtain more real results, it may develop to three-dimensional simulations and validate the results with experimental
data.
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