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Abstract. The existence of waterfall in many nations, such as Indonesia has a potential to
develop and to fulfill the electricity demand in the nation. By utilizing mechanical flow energy of
the waterfall, it would be able to generate electricity. The study of mechanical energy could be
done by simulating waterfall flow using 2-D smoothed particle hydrodynamics (SPH) method.
The SPH method is suitable to simulate the flow of the waterfall, because it has an advantage
which could form particles movement that mimic the characteristics of fluid. In this paper, the
SPH method is used to solve Navier-Stokes and continuity equation which are the main cores of
fluid motion. The governing equations of fluid flow are used to obtain the acceleration, velocity,
density, and position of the SPH particles as well as the completion of Leapfrog time-stepping
method. With these equations, simulating a waterfall flow would be more attractive and able to
complete the analysis of mechanical energy as desired. The mechanical energy that generated
from the waterfall flow is calculated and analyzed based on the mass, height, and velocity of
each SPH particle.

1. Introduction
Indonesia is rich in diversity of natural ecosystem, including waterfall which spreads in the
majority of regions. Besides as tourism destination, a waterfall is also as natural resource
which is renewable. Energy which come from waterfall is an opportunity and chance to use as
sustainable power plants, while the Indonesia is lack of innovation in utilization of renewable
resource.

Principle of hydroelectric power plants of waterfall is by changing water flow to mechanical
energy (using water turbine) and from the mechanical energy to electrical power (using
generator). Waterfall and its mechanical energy surely could help fulfill electrical needed in
Indonesia. Amount of the energy resulted could be analyzed with simulating its water flow. The
problem could be simulated with several methods. The waterfall simulation had been studied
by Uchiyama et al. [1] which was using two-dimensional moving particle semi-implicit (MPS)
method. However, another method that is used frequently and implemented in many fields of
study is smoothed particle hydrodynamics (SPH) method. While there are numerous alternative
methods, such as finite difference and finite element but it could not resolved the discontinuity
of fluid motion.

Kellomaki [2] had studied the large-scale water simulation in games in which he compared
some methods performance. It was concluded that SPH-method could provide the possibility of
almost abundant water topology changes which could not be provided by most other methods.

http://creativecommons.org/licenses/by/3.0
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SPH method is easy to implement and work best when applied to shallow water equation.
Moreover, Onderik [3] build an animation of particle based miscible and immiscible fluids with
multiple interfaces by using SPH method.

SPH method is an approximation of Lagrangian for computation in field of fluid dynamics.
It model fluid flow as group of particles that move in real-time by using law of Hydrodynamics
and gravitational force. The advantages of SPH method in fluid simulation can be seen more
obvious in [4]. SPH could simulate phenomenon which has domain of complex geometry while
other methods were not easy to implement. This paper focuses on SPH method in simulating
waterfall flow for analyzing influence of height to mechanical energy resulted.

2. SPH Theory
In this section, SPH theory to simulate water flow will be briefly discussed. The mechanical
energy is calculated by summing up the contribution of mechanical energy of each particles.

2.1. Waterfall’s mechanical energy
The first Thermodynamics Law explains on conservation of energy, which means that amount of
energy at the before and the end of process is the same. Energy could not be demolished as well
as be created, but energy could evolve from one form to other form of energy [5]. Furthermore,
mechanical energy is accumulation between kinetic and potential energy. Waterfalls mechanical
energy could be implemented in hydroelectric power plant.

Process of hydroelectric power plant is by converting waters potential energy become
mechanical energy by turbine and then the energy is converted to electrical energy by generator.
Waters height and velocity also support the process. Electrical power is obtained by using
waterfalls height. Mechanical energy is given by

Mechanical energy =
1

2
mv2 +mgh, (1)

where m is waters mass, v is waters velocity, g is gravitational acceleration, and h is waterfalls
height from ground. In SPH method, the amount of energy can be noted as discrete system
(ignoring external parameter) [6]. It is written as

E =
∑
i

mi

(
1

2
vi + ui

)
. (2)

The subscript i represents the parameter is belongs to particle i. Moreover, u denotes particles
heat energy. Because this simulation just explain mechanical energy, thus heat energy should be
ignored. Hence, we could use equation (1) for calculating particles mechanical energy. Therefore,
in SPH method formulation, the mechanical energy can be written as

Mechanical energy ≈
n∑

i=1

mi v
2
i

2
+mi g yi (3)

where, yi is position of particle i in y axis, which means as particles height.

2.2. SPH Method
In this simulation, we implement SPH method by doing Lagrangian approximation for computing
fluid dynamics. In the method, the fluid is represented as a collection of particles which have
fluid properties, such as mass, density, velocity, acceleration, and pressure [7]. In each particle,
they have velocity, acceleration and position. They have spatial distance, which then be meshed
by kernel function that could evaluate accuracy of physical quantity of each particle.
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Figure 1. Illustration of SPH particle in waterfall flow simulation with SPH method.

One disadvantage of the SPH method is that its simulation is slower than the grid method.
The reason is because particles move freely between one another, so it takes more time to
find neighbor particles. In addition, it is necessary to calculate the distance between each pair
of neighbor particles involving the calculation of square roots [8]. However, the SPH method
results is easier when it is visualized compared to the grid method. Figure 1 shows illustration
of particles motion in waterfall flow with SPH method.

There are at least four steps to be considered in the SPH approximation:

• The continuum domain is represented by a series of randomly distributed particles.

• Functions such as density, velocity, and energy are formulated by integral formulas.

• The integral formula of the function is converted into a finite sum of the neighbor particles.

• The kernel function used to satisfy the numerical accuracy of the results.

SPH method is started by giving integral formula for continue equation f(x):

f(x) =

∫
Ω
f(x́)δ(x− x́)dx́, (4)

where x is position vector and Ω is the domain of integral which consist of x. And also, δ(x− x́)
is function of Dirac delta which can be described as follows

δ(x− x́) =

{
x = 1, if x = x́
x = 0, if x 6= x́.

(5)

If Dirac delta function is replaced by a smoothing function, W , it yields the kernel approximation
of f(x):

< f(x) > =

∫
Ω
f(x́)W (x− x́, h)dx́, (6)

where h represents the influence area of smoothing function W which is called smoothing length.
Illustration of smoothing length of kernel function is shown by Figure 2. Liu and Liu [9] derived
kernel approximation for ∇ · f(x) by implementing Divergence Theorem. It is given by

< ∇ · f(x) > = −
∫

Ω
f(x́)∇ ·W (x− x́, h)dx́. (7)

The next step of the SPH method is to discretize a continuous function into a set of particles.
The integral starts with the number of neighbor particles of particle i in position xi in the
domain of influence Ωi. The object divided into small parts with mass m1, m2, ..., mN , then
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the volume of each part is ∆Vj = mj/ρj . Therefore, the particle approaches of equations (6)
and (7) are

< f(x) > =
N∑
j=1

mj

ρj
f(xj)W (x− xj , h), (8)

< ∇ · f(x) > = −
N∑
j=1

mj

ρj
f(xj) · ∇W (x− xj , h), (9)

where N represents the number of neighbor particles, mj and ρj are mass and density of particle
j.

Figure 2. Smoothing length of kernel function.

2.3. Kernel function
The accuracy of SPH method depends on kernel function. In order to implement kernel function,
it should fulfill several conditions as follow [6]:

• Normalization condition:
∫

ΩW (x− x́, h) dΩ = 1

• Delta function property: limh→0W (x− x́, h) = δ(x− x́)

• Compact support: W (x− x́, h) = 0 outside Ω domain.

The are many types of kernel function. One of them is cubic spline. This simulation uses
kernel function of cubic spline which is frequently used in SPH simulation:

W (r, h) =
10/7π

h2


1− 3

2( r
h)2 + 3

4( r
h)3, 0 6 r

h < 1

1
4(2− r

h)3, 1 6 r
h < 2

0, r
h > 2,

(10)

where r is distance between particle and its neighbor particle. Moreover, the derivative of
W (r, h) can be written as

∂W (r, h)

∂r
=

10/7π

h2


−3( r

h) + 9
4( r

h)2, 0 6 r
h < 1

−3
4(2− r

h)2, 1 6 r
h < 2

0, r
h > 2.

(11)
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2.4. Governing equation
Governing equation for the fluid dynamics is momentum equation (Navier-Stokes equation),
continuity equation, and equation of state [10].

2.4.1. Momentum equation Navier-Stokes or momentum equation in continuous domain can
be writen as

Dv

Dt
= −1

ρ
∇p+ F (12)

where v, ρ, and F are velocity, density, and external force per mass of fluid, respectively. In this
case, surface tension is assumed that do not significantly happen, thus it could be ignored. In
SPH formulation, momentum equation could be written as

dvi

dt
= −

N∑
j=1

mj

(
Pj

ρ2
j

+
Pi

ρ2
i

)
∇iW (xi − xj , h) + Fi (13)

2.4.2. Continuity equation It is assumed that the fluid is weakly compressible. It means that
the density of fluid change with time, but the change of density is not significant. The continuity
equation can be written as

Dρ

Dt
= −ρ∇ · v (14)

Equation (14) above could be written in SPH notation as

dρi
dt

=
N∑
j=1

mj(vi − vj) · ∇iW (xi − xj , h). (15)

2.4.3. Equation of state Equation of state represents relationship between density and pressure.
In simple form, the equation of state is given by

P = c2(ρ− ρ0) + Patm (16)

where c, ρ0, and Patm are speed of sound, density reference, atmospheric pressure, respectively.
The choice of the speed of sound is very important in the simulation because it influences the
change of density. The speed of sound can be selected as c =

√
gH, in order to keep fluctuation

of density less than 1% [10].

2.5. Equation of particle movement
Particle movement can be calculated by solving the equation as follow [11]

dra
dt

= va (17)

or XSPH variant
dra
dt

= v̂a = va + ε
∑
b

mb

(
vba
ρ̄ab

)
Wab (18)

where ρ̄ = (ρa + ρb)/2 and ε (0 ≤ ε ≤ 1) is a constant. The XSPH variant moves a particle with
velocity which is close to average of its neighborhood [12].
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Figure 3. Solid particles boundary with its normal vector.

2.6. Time stepping
Time stepping is differential function which would run the simulation movement (plot of particles
position) each step. In this simulation, SPH method is solved by Leapfrog method of time
stepping. This method uses general formula in Euler, that is [13]

x = x+
h

2
v, (19)

where h is interval of time stepping (time difference). Depend on numerical integration (midpoint
method) which is used in this Leapfrog method, we could change v with midpoint of interval
[14]:

x1 = x0 + hv1/2. (20)

Assuming that we can calculate v1/2 by several ways. Then, we can implement rule of midpoint
for calculating value of v at the next step.

v3/2 = v1/2 + hF (x1) (21)

Then we receive the next step x by x2 = x1 + hv3/2. After we start with x0 and v1/2, we can
continue x and v by using Leapfrog method and relating one and each other:

xn+1 = xn + hvn+1/2, (22)

where
vn+3/2 = vn+1/2 + hF (xn+1). (23)

2.7. Boundary treatment
In SPH approximation, particle position should be paid attention when it close to boundary
wall. Boundary walls are assumed as solid particle. It is needed for preventing fluid particle
to permeate boundary wall. Fluid particles, which close to wall boundary would face repulsive
force from solid particle. The repulsive force which is faced by fluid particle j is normal to solid
particle i is given by

fji = niR(y)P (x) (24)

By using vector of normal from solid particle boundary, then

R(y) =
1
√
q

(1− q) and P (x) =
1

2
(1 + cos(

πx

∆p
))
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Figure 4. Example of dam-break simulation using SPH method.

Figure 5. Initial set up of waterfall simulation using SPH method.

where q = y/(2∆p), x is projection distance of fluid particle j at vector tangent from solid
particle boundary i, y is perpendicular distance of fluid particle j from solid partcle boundary
i, ∆p is distance of early particle. Distance of solid particle boundary depend on early fluid
particle. If ∆p is too small, fluid particle will face rejection force before close to wall boundary.
On the other hand, if ∆p is too big, numerous fluid particles will permeate boundary wall before
face repulsive force [10].

3. Experimental Setup
The SPH simulation is build by using programming language C/C++. Gnuplot is also used for
visualization of SPH particles. Figure 4 shows the dam-break simulation by using SPH method
which is implemented by C/C++ program. Overall, the area of the simulation is established by
2 × 1 meters. In the plot of the particle position, physical properties such as velocity, density,
pressure, and mass are always changing in each time.

There are two types of SPH particles, the first of which is fluid particle which contain physical
properties, and solid particle that each particle has no velocity value. Fluid particles are formed
into water to be streamed into waterfalls, whereas solid particles are formed into the system’s
boundary walls. All parameters for the fluid and solid SPH particles are summarized in Table 1
and Table 2, respectively. The initial set up of waterfall simulation using SPH method is depicted
by Figure 5. After establishing system, the simulation is run by using Leapfrog time-stepping.
The final time of this simulation is 2.2 seconds.
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Table 1. Parameter of fluid particle.

Parameter symbol value unit

Gravitational acceleration g 9.8 m/s2

Initial density of fluid ρ0 1000 kg/m3

Diameter of a particle - 0.00625 m
Number of fluid particles - 10216 -

Table 2. Parameters of solid particle.

Parameter symbol value unit

Gravitational acceleration g 9.8 m/s2

Density of solid wall ρ 1200 kg/m3

Diameter of a particle - 0.00625 m
Number of solid particles - 2563 -

Figure 6. Waterfall simulation by using SPH method with waterfall height of 0.55 meters.

4. Results and Discussion
There are three scenarios in simulating the waterfall flow by using SPH method. The three
scenarios are executed by varying the height of waterfall above ground. In each scenario, the
mechanical energy resulted will be calculated and analyzed.

4.1. Waterfall height of 0.55 meters
Figure 6 shows the waterfall simulation by using SPH method with waterfall height of 0.55
meters. By this height, the amount of mechanical energy is calculated inside the calculated zone
(x-axis from 0.46 to 1.2 meters and y-axis from 0.45 to 0.55 meters). Mechanical energy average
in each time inside calculation zone with waterfall height of 0.55 meters is displayed by Figure 7.
The figure reveals the amount of mechanical energy in Joule against time. From the figure, it
can be seen that the average of mechanical energy for whole time is 23.83 Joule.
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Figure 7. Mechanical energy average (in Joule) in each time inside calculation zone with
waterfall height of 0.55 meters.

Figure 8. Waterfall simulation by using SPH method with waterfall height of 0.45 meters.

4.2. Waterfall height of 0.45 meters
The waterfall flow simulation using SPH method with height of 0.45 meters is presented in
Figure 8. The calculation zone for this scenario is x-axis from 0.46 to 1.2 meters and y-axis from
0.35 to 0.45 meters. Here, the average of mechanical energy is calculated inside the calculated
zone. Figure 9 shows mechanical energy average in each time inside calculation zone with
waterfall height of 0.45 meters. The figure reveals the amount of mechanical energy in Joule
against time. For this scenario, it can be seen that the average of mechanical energy for whole
time is 21.17 Joule.

4.3. Waterfall height of 0.35 meters
The calculation zone for third scenario is x-axis from 0.46 to 1.2 meters and y-axis from 0.25
to 0.35 meters. Here, the average of mechanical energy is calculated inside the calculated zone.
The waterfall flow simulation using SPH method with height of 0.35 meters is presented in
Figure 10. The mechanical energy average in each time inside calculation zone with waterfall
height of 0.35 meters is shown by Figure 11. The figure reveals the amount of mechanical energy
in Joule against time. It can be seen that the average of mechanical energy for whole time is
18.95 Joule.

4.4. Influence of waterfall height to mechanical energy
The mechanical energy average in each time inside calculation zone with waterfall height of 0.55,
0.45, and 0.35 meters is displayed in Figure 12. It can be seen that the higher the waterfall
position, the greater the mechanical energy. Moreover, the average of mechanical energy for
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Figure 9. Mechanical energy average (in Joule) in each time inside calculation zone with
waterfall height of 0.45 meters.

Figure 10. Waterfall simulation by using SPH method with waterfall height of 0.35 meters.

Figure 11. Mechanical energy average (in Joule) in each time inside calculation zone with
waterfall height of 0.35 meters.
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Figure 12. Mechanical energy average (in Joule) in each time inside calculation zone with
waterfall height of 0.55, 0.45, and 0.35 meters.

Figure 13. Average of mechanical energy for whole time against waterfall height.

whole time against waterfall height is shown by Figure 13. In the simulation, the waterfall
with height of 0.55 meters has mechanical energy of 23.83 Joule. This amount of energy can
result 11.9 Watt which is capable of turning on an LED floodlight with a voltage of 220 Volts.
Moreover, the numerical results show that by rising the waterfall hight by 0.1 m, the mechanical
energy produced is increasing by 2.4 Joule. Therefore, it can be interpreted that if there are
two waterfalls with a difference of 0.1 meters of height may result 2.4 Joule range of mechanical
energy generated.

5. Conclusion
From the numerical results, it has been shown that the mechanical energy of waterfall is highly
influenced by its height. In this case, the higher the waterfall, the greater the mechanical energy.
By the height of 0.55 meters, the waterfall generates mechanical energy of 23.82 Joule while the
height is 0.45 meters, its mechanical energy is 21.17 Joule. Moreover, the waterfall fliw produces
18.95 Joule. It can be concluded that by increasing the waterfall height of 0.1 meters, the
amount of mechanical energy is rising by 2.4 Joule.
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