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Abstract. In this paper, a numerical implementation of 1D Variational Boussinesq (VB) wave 

model in a staggered grid scheme is discussed. The staggered grid scheme that is used is based 

on the idea proposed by Stelling & Duinmeijer (2003) who implemented the scheme in a non-

dispersive Shallow Water Equations in a conservative form. Here, we extend the idea of the 

staggered scheme to be applied for VB wave model. To test the accuracy of the 

implementation, we test the numerical implementation of VB wave model for simulating 

propagation of solitary wave against analytical solution. Moreover, to test dispersiveness of the 

model, we simulate a standing wave against analytical solution. Results of simulations show a 

good agreement with analytical solutions. 

1.  Introduction 

Water wave modelling has been a favorite topic among coastal engineers since the last 3 decades; 

especially when it is used as a tool to understand wave propagation and behavior for design 

engineering of an offshore as well as coastal structure. Over several physical aspects of water wave, 

the most import aspects are dispersion property and nonlinearity. Dispersion in water wave means that 

longer wave (or low frequency waves) travels faster than shorter waves (high frequency waves). 

Boussinesq-type models (BTMs) are the most favorite wave model for researchers to simulate wave 

propagation, for long wave such as tsunami, as well as short wave such as wind wave. The original 

Boussinesq model was introduced by J.V. Boussinesq in 1872 [7] is valid only for long waves above 

flat bottom. The original model is then extended by Peregrine in 1967 [14] to be able to simulate wave 

above an uneven bottom. Two most popular BTMs are the Boussinesq of Madsen & Sorensen in 1992 

[12] and the Boussinesq of Nwogu in 1993 [13]. Since then, these BTMs are extended for simulating 

highly dispersive and highly nonlinear wave propagation; see [8] for review of the development of 

BTMs.   

Numerical implementation to be chosen for the BTMs is also important to solve the model 

numerically. Most popular numerical implementations among these BTMs are Finite Difference 

Method (FDM), Finite Volume Method (FVM) and Finite Element Method (FEM). These numerical 

implementations are mostly using collocated grid, i.e. all variables are defined in the same grid points. 

For continuous problems the collocated grid gives good performance, while in boundary condition 

http://creativecommons.org/licenses/by/3.0
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such wet-dry condition, the collocated grid may lead to a stability problem where an artificial damping 

is required (see [11]). A different approach is a staggered grid approach, where grids of surface 

elevation and velocity are in different locations. Stelling & Duinmeijer in 2003 [15] propose a 

staggered grid scheme for solving Shallow Water Equations (SWE) that performs relative good for 

rapidly varied shallow water flows. The staggered scheme is then extended for simulating dispersive 

Non-Hydrostatic wave model in [16]. 

In this paper, we use a Boussinesq type model that is derived by using a variational approach, i.e. 

that is so-called the Variational Boussinesq (VB) model. The model was implemented by using 

spectral method in [9] and by using Finite Element Method (FEM), see [1, 2, 4, 5, 6] and later is 

extended to a fully nonlinear model by also using FEM [3]. Both implementations are using collocated 

grid, which give challenges when dealing with wet-dry boundary conditions. Here, we implemented 

numerically the VB model in a staggered grid scheme as proposed by Stelling & Duinmeijer in [15]. 

Accuracy of the implementation is tested for simulating two cases, i.e. a dispersive standing wave in a 

close basin and a propagation of a solitary wave.  

The structure of this paper is as follows. In the next section, we describe the VB model as it is 

introduced in [1]. This section is followed by a staggered grid implementation of the VB model using 

the basic idea in [15]. In Section 4, we test the performance of the implementation for simulation two 

test cases against analytical solution. Finally, some conclusions and discussions are described in the 

last section. 

2.  Variational Boussinesq Model 

In this paper, we use the 1D Variational Boussinesq (VB) model that is introduced by Klopman ea. in 

2010 [9], for simulating dispersive wave. The VB model is derived based on variational formulation 

proposed by Luke in 1967 [10]. By assuming the water as an ideal fluid, i.e. inviscid, incompressible 

and the flow is assumed to be irrotational, the dynamic of wave can be exactly discribed by a 

Hamiltonian system, see [17]. The Hamiltonian is the total energy, i.e. sum of the potential and the 

kinetic energy. As derived in [1], the 1D VB model is described by two dynamic equations as follows 

𝜕𝑡𝜂 = −𝜕𝑥((ℎ + 𝜂)𝜕𝑥𝜙) − 𝜕𝑥(𝛽𝜕𝑥𝜓)                                       (2.1) 

𝜕𝑡𝜙 = −𝑔𝜂 − (𝜕𝑥𝜙)2/2                                  (2.2) 

and an additional elliptic equation  

−𝜕𝑥(𝛼𝜕𝑥𝜓) + 𝛾𝜓 = 𝜕𝑥(𝛽𝜕𝑥𝜙)              (2.3) 

where 𝜂(𝑥, 𝑡) and 𝜑(𝑥, 𝑡) are the canonical variables of the Hamiltonian system, i.e. surface elevation 

and surface potential, respectively. Here, h(x) is the water depth and 𝑔 = 9.81𝑚/𝑠2  is the 

gravitational acceleration. A spatially dependent variable 𝜓(𝑥) is an auxiliary variable that is used in 

the approximation of the VB model, see [1, 5], which has to calculated in every time step by solving 

the elliptic equation in (2.3).  The coefficients 𝛼, 𝛽 & 𝛾 are the VB coefficients. For parabolic vertical 

profile the coefficients are given by    

𝛼 =
2

15
𝐻3;    𝛽 = −

𝐻2

3
;   𝛾 =

𝐻

3
    (2.4) 

where 𝐻 = ℎ + 𝜂 is the total depth. 

Note that the VB model in (2.1)-(2.3) are written in canonical variables 𝜂(𝑥, 𝑡) and 𝜑(𝑥, 𝑡). Most 

Boussinesq type of model as well as non-hydrostatic model are written in 𝜂(𝑥, 𝑡) and 𝑢(𝑥, 𝑡), where 

u(x,t) is horizontal velocity. As shown in [9], the VB model can be written in surface horizontal 

velocity u(x,t) by using the fact that u can be written as 𝑢 = 𝜕𝑥𝜙. Therefore, the VB model can be 

rewritten as  

𝜕𝑡𝜂 = −𝜕𝑥(𝐻𝑢) − 𝜕𝑥(𝛽𝜕𝑥𝜓)                                 (2.5) 

𝜕𝑡𝑢 = −𝑔𝜕𝑥𝜂 − 𝑢𝜕𝑥𝑢                                  (2.6) 

−𝜕𝑥(𝛼𝜕𝑥𝜓) + 𝛾𝜓 = 𝜕𝑥(𝛽𝑢)                (2.7) 
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Notice that equation (2.5) and (2.7) are actually the Shallow Water Equations (SWE) with an 

additional term in the continuity equation (2.5), i.e. −𝜕𝑥(𝛽𝜕𝑥𝜓), and the equation (2.6) is an additional 

equation for searching 𝜓 in every time step. As described in [3] the VB model (2.4)-(2.6) can be 

extended for simulating highly dispersive and strongly nonlinear waves. In the next section we describe 

the staggered grid scheme that is proposed by [15] for implementing numerically the equation (2.4)-

(2.6). 

3.  Staggered Grid Scheme 

To design an efficient and accurate wave code, not only an accurate wave model is needed but it is 

also important to choose a stable, simple, and efficient numerical implementation. In this paper we 

implemented the VB model in (2.4)-(2.6) numerically in a staggered grid scheme proposed in [15]. 

Staggered grid means that eq. (2.4) and (2.5) are approximated on different cells. Here, 𝜂 and 𝜓 are 

calculated at full grid points notated by 𝑥𝑖,  𝑖 = 1, 2, ⋯ , 𝑁 and u is calculated at half grid points 𝑥𝑖+1/2,

𝑖 = 1, 2, ⋯ , 𝑁 + 1 as illustrated in Figure 1. Just as 𝜂, the depth h and the total depth H is also in the 

full grid. As consequences, the coefficient 𝛼, 𝛽 and 𝛾 are also in the full grid.  

 

 
 

Figure. 1. Illustration of staggered grid scheme. 

 

In the staggered scheme discretization proposed by Stelling & Duinmeijer (2003) [15], the spatial 

derivatives are approximated by second order center difference and first order upwind scheme. The 

approximation of the continuity equation of VB model (2.5) is given by the following relation 

 

𝜂𝑖
𝑛+1−𝜂𝑖

𝑛

∆𝑡
= − (

∗𝐻
𝑖+

1
2

𝑛 𝑢
𝑖+

1
2

𝑛  − ∗𝐻
𝑖−

1
2

𝑛 𝑢
𝑖−

1
2

𝑛

∆𝑥
) − (

∗𝛽
𝑖+

1
2

𝑛 (𝜓𝑖+1
𝑛 −𝜓𝑖

𝑛) − ∗𝛽
𝑖−

1
2

𝑛 (𝜓𝑖
𝑛−𝜓𝑖−1

𝑛 )

(∆𝑥)2 )                     (2.8) 

 

Here, 𝜂(𝑥𝑖, 𝑡𝑛) is denoted by 𝜂𝑖
𝑛, 𝑢(𝑥𝑖+1/2, 𝑡𝑛) is denoted by 𝑢𝑖+1/2

𝑛 ,  just as well as other variables, 

i.e. H, u, 𝛽, 𝜓. The length spatial grid is denoted by Δ𝑥 and the length of time discretization is denoted 

by Δ𝑡 . In the eq. (2.8), the values of *H at (𝑖 +
1

2
) and (𝑖 −

1

2
)at are undefined, these terms are 

indicated by the superscript *. Following [15], the values of *H is approximated using first-order 

upwind method as follows. 

∗𝐻
𝑖+

1

2

𝑛 {
𝐻𝑖

𝑛,                𝑖𝑓 𝑢
𝑖+

1

2

𝑛 ≥ 0

𝐻𝑖+1
𝑛 ,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (2.9) 

 

The condition (2.9) above states that, when the flow is going to the right or 𝑢
𝑖+

1

2

≥ 0, the information 

for *𝐻
𝑖+

1

2

 values  can be obtained from 𝐻𝑖. The other way around, when the flow is to the left  or 

𝑢
𝑖+

1

2

< 0, the information for *𝐻
𝑖+

1

2

 values is obtained from 𝐻𝑖+1. Since the coefficients α, β, dan γ 

are function of H, therefore the condition (2.9) are also applied for these coefficient for obtain 

values for *α, *β, dan *γ. 
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Similar to the idea in [14], the approximation of the momentum equation of VB model (2.6) is 

given by the following relation 
𝑢

𝑖+
1
2

𝑛+1−𝑢
𝑖+

1
2

𝑛

∆𝑡
= −𝑔 (

𝜂𝑖+1
𝑛+1−𝜂𝑖

𝑛+1

∆𝑥
) − (𝑢𝜕𝑥𝑢)

𝑖+
1

2

𝑛      (2.10) 

Rather than directly subtitute the values of u in the advection term 𝜕𝑥𝑢 , instead, the term is calculated 

by using the following relation 

𝑢𝜕𝑥𝑢 =  
1

ℎ
(
𝜕(𝑞𝑢)

𝜕𝑥
− 𝑢

𝜕𝑞

𝜕𝑥
 ) 

where 𝑞 = ℎ𝑢 is the horizontal momentum. A consistent approximation for the advection term as 

suggested in [15]  is as follows 

 

(𝑢 ∂𝑥𝑢)𝑖+1 =
1

�̅�
𝑖+

1
2

(
�̅�𝑖+1.∗𝑢𝑖+1−�̅�𝑖 .∗𝑢𝑖

∆𝑥
− 𝑢

𝑖+
1

2

�̅�𝑖+1−�̅�𝑖

∆𝑥
)               (2.11) 

where the bar sign denotes a simple interpolation on a point based on two points besides it, 

i.e. 

�̅�
𝑖+

1

2

=
1

2
(𝐻𝑖 + 𝐻𝑖+1),           �̅�

𝑖
=

1

2
(𝑞

𝑖+
1

2

+ 𝑞
𝑖−

1

2

) ,          𝑞
𝑖+

1

2

=.∗ 𝐻
𝑖+

1

2

+ 𝑢
𝑖−

1

2

  

Just as *H in eq. (2.8), the *u is calculated using upwind approximation as  

∗𝑢𝑖
𝑛 {

𝑢
𝑖−

1

2

𝑛 ,                𝑖𝑓  �̅�𝑖
𝑛 ≥ 0

𝑢
𝑖+

1

2

𝑛 ,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (2.12) 

 

The last equation (2.7), i.e. the elliptic equation for solving 𝜓 in every time step,  is approximated 

by the following relation 
∗𝛼

𝑖+
1
2

(𝜓𝑖+1−𝜓𝑖)− ∗𝛼
𝑖−

1
2

(𝜓𝑖−𝜓𝑖−1)

(∆𝑥)2 +.∗ 𝛾𝑖𝜓
𝑖

=

∗𝛽
𝑖+

1
2

 𝑢
𝑖+

1
2

𝑛 − ∗𝛽
𝑖−

1
2

 𝑢
𝑖−

1
2

𝑛

∆𝑥
               (2.13) 

Note that in eq. (2.13) leads into a linear matrix system that has to be solved every time step in order 

to obtain value of 𝜓 for a given value of 𝑢. The resulting matrix system is a tridiagonal matrix system 

that can be solved efficiently using Thomas’ algorithm. 

4.  Test Cases 

To test the accuracy and consistency of numerical implementation of VB model as proposed in the 

previous section, we use two test cases, i.e. a dispersive standing wave in a close basin and a 

propagation of solitary wave. Results of simulation of both cases will be compared with analytical 

solutions. To show the importance of dispersive effects, we compare the simulations performed with 

VB model with non-dispersive Shallow Water Equations (hydrostatic model) in Stelling & Duinmeijer 

(2003) [15]. 

4.1.  Standing wave in a close basin 

The first case to test consistency of dispersive effect of VB model, we simulate a standing wave in a 

close basin. Computational domain that is used is 𝑥 ∈ [0,20] m with a hardwall boundary condition on 

both sides. In the domain, we use an initial wave condition  

𝜂(𝑥, 𝑡 = 0) = 0.1 cos (𝑘0𝑥)                 (2.14) 
With wave number 𝑘0 = 𝜋/20  above depth of ℎ0 = 10𝑚 . Notice that the amplitude is small 

compared to the depth, therefore this case is actually a weakly nonlinear problem. On the other hand, 

this is a dispersive case, since 𝑘0ℎ0 = 𝜋/2 = 1.57. The exact solution of the standing wave is given in 

the following expression 
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𝜂(𝑥, 𝑡 = 0) = 0.05[cos(𝑘0(𝑥 − 𝑐𝑡)) + cos(𝑘0(𝑥 + 𝑐𝑡))]          (2.15) 
where c is the exact phase velocity, defined as 

𝑐 =
𝜔

𝑘0
= √

𝑔

𝑘0
tanh (𝑘0ℎ0) 

For computation of the standing wave, we use Δ𝑥 = 0.05𝑚 and Δ𝑡 = 0.01𝑠. The grid size is chosen to 

represent the wave to be simulated. Snapshot of the simulation at t=0s, 1s, 1.5s and 2.5s are shown in 

Figure 2.   

To compare results of simulation with analytical solution as well as non-dispersive SWE, we extract a 

signal at x=1m. The comparison is shown in Figure 3. It can be seen that the simulation of VB model 

give a good agreement with the analytical solution in (2.15), whereas the simulation with non-

dispersive SWE gives wrong result. The SWE has faster phase velocity, i.e. 𝑐0 = √𝑔ℎ0  , which 

causing the propagation of standing wave of SWE is too fast. 

 

 

Figure 2. Snapshot of surface elevation at various times for standing wave simulation. 

 

Figure 3. Comparison of signal at x=1m of analytical solution (dotted blue circles), VB model (solid 

red line) and SWE (dashed red line) for standing wave simulation. 

4.2.  Solitary wave propagation   

The second test case is a propagation of a solitary wave. Solitary wave is a wave that propagates with 

a non-disturbed wave form, which occurs when the effect of dispersion is balanced with the nonlinear 

effect. Therefore, to be able to simulate solitary wave accurately, the wave model (as well as its 
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numerical implementation) should has a correct dispersion as well as nonlinearity. The exact solitary 

wave is given by the following expression 

𝜂(𝑥, 𝑡) = 𝐴0 sech2(𝜁(𝑥 − 𝜆𝑡)) ,   𝜆 = √𝑔(ℎ0 + 𝐴 ),   𝜁 = √
3𝐴0

4ℎ0(ℎ0+𝐴0)
 

Here, 𝐴0 is the amplitude of the solitary wave, 𝜆 is the speed of the solitary wave. The solitary wave 

above is obtained from analytical solution of KdV equation.  

We consider a domain of 𝑥 ∈ [0, 450] m that is discretized with Δ𝑥 = 1𝑚. The length of time 

discretization is Δ𝑡 = 0.01𝑠. In Figure 4, snapshot of solitary wave propagation is at t=14s, 21s and 

28s, for SWE model (left plot) and for VB model (right plot). Both numerical simulations are 

compared with the analytical solution. As the SWE has no dispersion effect, the nonlinearity of SWE 

become too dominant, as a result the solitary wave becomes steeper, nearly breaking. On the other 

hand, results of simulation with VB model show a good agreement with analytical solution. We also 

compare signals that are extracted at x=250m as shown in Figure 5. Just as in the snapshot plot, similar 

patterns are also seen in these signals, i.e. the SWE result shows steeper wave as the dispersion of the 

model is absent. 

 

 

Figure. 4. Snapshot of simulation with SWE model (left plot, denoted by red dashed line) and with 

VB model (right plot, denoted by red dashed line) with analytical solution (solid blue line) at t=14s, 

21s, and 28s. 

 
 

Figure. 5. Comparison of signal at x=250m of analytical solution of solitary wave (blue circles), 

simulation with SWE (dotted red line) and simulation with VB model (solid red line). 



7

1234567890 ‘’“”

International Conference on Data and Information Science IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 971 (2018) 012020  doi :10.1088/1742-6596/971/1/012020

 

 

 

 

 

 

5.  Conclusion and discussion  

The original idea of the staggered grid introduced by Stelling & Duinmeijer (2003) [15] is extended 

for solving numerically the dispersive wave model, i.e. the Variational Boussinesq (VB) model. An 

additional elliptic equation in the VB model leads to a tridiagonal matrix system that is solved 

efficiently by using Thomas’ algorithm. Two test cases are presented to test consistency of numerical 

implementation of the VB model, i.e. standing wave simulation and solitary wave propagation. Both 

cases show the importance of dispersion property of wave model. The comparison of the results of 

simulation with staggered grid VB model show a good agreement with analytical solution, whereas the 

non-dispersive staggered grid Shallow Water Equations (SWE) cannot simulate the proposed 

phenomena accurately. The staggered grid implementation for the 1D VB model here can be extended 

into 2D problem.  
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