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Abstract. In this paper, a parallel implementation of an elliptic solver in solving 1D
Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by
implementing a staggered grid scheme to continuity, momentum, and elliptic equation of
Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation
is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is
executed on multicore processors with shared memory architectures using OpenMP. To measure
the performance of parallel program, large number of grids is varied from 28 to 214. Two test
cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed
to evaluate the parallel program. The numerical results are verified with analytical solution of
solitary and standing wave. The best speedup of solitary and standing wave test cases is about
2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8
threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and
standing wave test cases, respectively.

1. Introduction
Boussinesq type of models have been widely used to solve various coastal engineering problems
such as for simulating wave propagation against breakwater for harbor design, tsunami
generation and propagation, wave-structure interaction, floating oscillating water column, and
ship mooring system. The Boussinesq model was first introduced by J.V. Boussinesq in 1872 [1].
Unlike the Shallow Water Equations (SWE), the Boussinesq model can simulate dispersion effect
in wave propagation. Some of numerical methods that have been developed to solve Boussinesq
models are finite difference, finite element, finite volume, and spectral method; see for example
[2, 3, 4, 5] for these numerical implementations. The model in [2] has been used for simulating
long wave such as tsunami propagation (see [5, 6]), as well as short wave such as wind wave (see
[2, 7, 8]).

In modeling and simulation of fluid dynamics, number of complex calculations and large data
have conduced very long computational time. On the other hand, numerical simulation results
are required quickly and precisely, as example in weather and ocean wave forecasting. In last
decades, the development of multicore computers to get fast simulation results is growing rapidly.
However, the existing code of computer programs only utilized single core even it was executed in
multicore computer architecture. Hence, it is required to develop a parallel algorithm that can be
implemented in distributed or shared memory architecture. OpenMP (Open Multi-Processing) is
an API (application program interface) that supports shared memory multiprocessing. OpenMP

http://creativecommons.org/licenses/by/3.0
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has been developed widely in scientific simulation. Marrone et al. [9] studied simulation of ship
wave breaking pattern using OpenMP. Wen et al. [10] developed OpenMP parallel computing to
simulate wave-structure interactions. Moreover, Michailidis et al. [11] solved tridiagonal system
with pipelining technique in OpenMP.

Tridiagonal systems often appear in various scientific computing problems. Tridiagonal
system arises from numerical solution of partial differential equation such as an elliptic equation
which is solved by finite difference, finite volume, and finite element method. The most known of
the tridiagonal system solver is Thomas algorithm [12]. The algorithm is simple and fast to solve
tridiagonal system. Unfortunately, for large number of linear equations, Thomas algorithm is
not efficient. Besides, Thomas algorithm is not suitable for parallelization. In last few decades,
some parallel algorithms are developed to solve tridiagonal system especially those involving
large size of linear equations. Allmann et al. [13] developed cyclic reduction algorithm to solve
tridiagonal system in shared memory machine. Further, Stone et al. [14] used recursive doubling
to large number of linear equation in tridiagonal system. In addition, Qeusada-Barriuso [15]
implemented Bondeli’s algorithm in OpenMP to solve tridiagonal system.

This paper focuses on parallelization of a tridiagonal system of an elliptic solution which is
part of numerical solution of Boussinesq model in [2, 7, 8]. Cyclic reduction is applied to solve
tridiagonal system and is implemented on OpenMP parallel architecture. More discussion of
cyclic reduction can be found in [16]. Speedup and efficiency of the parallel program is analyzed
to evaluate the performance of parallel solver of elliptic equation. This paper is organized as
follows. In Section 2, 1D Boussinesq model and its numerical solution based staggered grid
is briefly discussed. Parallelization of elliptic solution is presented in Section 3. Further,
performance of parallel program is discussed in Section 4. The conclusion of the numerical
experiment is given in Section 5.

2. Boussinesq Model & Numerical Solution
There are some mathematical models to simulate water wave propagation. The simplest one is
the Shallow Water Equations (SWE). The SWE consists of continuity and momentum equation.
However, the drawback of the SWE is the effect of dispersion on wave propagation that is not
taken into account. In this study, a Boussinesq model is used to simulate water wave. In the
Boussinesq type of model, the dispersion effect is taken into account when deriving the model.
In this paper, we use the Boussinesq model that is introduced in [2, 7, 8]. In this Boussinesq
model, there is an additional term in continuity equation which represents dispersion effect.
Asides from continuity and momentum equation, in the Boussinesq model of [8], there is an
auxiliary equation, i.e. an elliptic equation, that has to be solved for correcting dispersion
effect.

Let η(x, t) and u(x, t) represent elevation of water surface and velocity of water wave in x−
direction, respectively. Let H(x, t) = η(x, t) + h(x) be the total depth of the fluid where h(x)
is depth from mean water level. Moreover, ψ(x, t) is an auxiliary variable which depends on
horizontal variable. The 1D Boussinesq model that is proposed by [2, 8] is given by

∂tη = −∂x(Hu)− ∂x(β∂xψ) (1)

∂tu = −g∂xη − u∂xu− cf
|u|u
H

(2)

−∂x(α∂xψ) + γψ = ∂x(βu), (3)

where g and cf denote gravitational acceleration and bottom friction coefficient, respectively.
Here, α(z), β(z), γ(z) are coefficients which depend on vertical profile and given by

α =
2

15
H3, β = −H

2

3
, γ =

H

3
. (4)
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Note that, as denoted in shallow water equation, equation (1) and (2) are also called continuity
and momentum equation with additional term −∂x(β∂xψ). Furthermore, equation (3) is called
the elliptic equation. In next section, numerical solution of the elliptic equation will be
parallelized by using cyclic reduction algorithm.
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Figure 1. Illustration of parallelization of cyclic reduction algorithm for 8 linear equations and
4 processors.

Numerical solution of Boussinesq model is solved by staggered grid discretization which is
proposed in [17]. More review about staggered grid can be found in [18]. Implementation
of staggered grid to (1) - (3) can be described as follows. Suppose Ω = [L−

x , L
+
x ] be the

computational domain of fluid. The region of interest is partitioned into Nx subregions or
subintervals. Here, Nx is also called number of grids. Moreover, the length of subinterval is
∆x = (L+

x − L−
x )/Nx. Let subscript i + 1/2 be the interface between node i and i + 1. Here,

xi+1/2 is a node between xi and xi+1 and is called a half grid. Moreover, xi denotes a full grid. In
staggered grid scheme, the discretization of η(x, t) and u(x, t) is assigned in difference position of
grid. η(x, t) is assigned in full grid meanwhile u(x, t) is assigned in half grid. Moreover, ψ(x, t)
is calculated in full grid. Discretization of (1) - (3) based on staggered grid is given by

ηn+1
i − ηni

∆t
= −

∗Hn
i+ 1

2

un
i+ 1

2

− ∗Hn
i− 1

2

un
i− 1

2

∆x
−

∗βn
i+ 1

2

(
ψn
i+1 − ψn

i

)
− ∗βn

i− 1
2

(
ψn
i − ψn

i−1

)
(∆x)2

(5)

un+1
i+ 1

2

− un
i+ 1

2

∆t
= −g

ηn+1
i+1 − η

n+1
i

∆x
− (u∂xu)ni+ 1

2
− cf

|u|u
H

∣∣∣∣n
i+ 1

2

(6)

−
∗αn

i+ 1
2

(
ψn
i+1 − ψn

i

)
− ∗αn

i− 1
2

(
ψn
i − ψn

i−1

)
(∆x)2

+ ∗γiψi =

∗βn
i+ 1

2

un
i+ 1

2

− ∗βn
i− 1

2

un
i− 1

2

∆x
(7)

The superscript * denotes the variable is still unknown yet. Here, ∗H is approximated by first-
order upwind method:

∗Hi+ 1
2

=

{
Hi, if ui+ 1

2
≥ 0

Hi+1, if ui+ 1
2
< 0.

(8)
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The first-order upwind method is also applied to ∗α, ∗β, and ∗γ.
Finally, the computational procedure in one time step to solve 1D Boussinesq model based

on staggered grid is summarized as follows.

(i) Compute ∗α, ∗β, and ∗γ using first-order upwind method and equation (4).

(ii) Solve elliptic equation (7) to obtain ψn
i .

(iii) Update surface elevation ηn+1
i base on equation (5).

(iv) Update velocity un+1
i+ 1

2

based on equation (6).

Algorithm 1 Solve tridiagonal system Ax = f using Cyclic Reduction

Input: matrix size: n; tridiagonal matrix: A[i][j], i = 0, 1, 2, ..., n−1, j = 0, 1, 2, ..., n−1 with
A[i][i] 6= 0; right hand side: f [i], i = 0, 1, 2, ..., n− 1

Output: x[i], i = 0, 1, 2, ..., n− 1
1: {Forward Reduction}
2: for i = 0 to (log2 n)− 1 do
3: for j = 2i+1 − 1 to n− 1, j = j + 2i+1 do
4: idx1 ← j − 2i

5: idx2 ← j + 2i

6: α← A[j][idx1]/A[idx1][idx1]
7: γ ← A[j][idx2]/A[idx2][idx2]
8: for k = 0 to n− 1 do
9: A[j][k]← A[j][k]− (αA[idx1][k] + γA[idx2][k])

10: end for
11: f [j]← f [j]− (αf [idx1] + γF [idx2])
12: end for
13: end for
14: {Backward Substitution}
15: idx2 ← n− 1
16: idx1 ← n/2− 1
17: x[idx2] = f [idx2]/A[idx2][idx2]
18: x[idx1] = (f [idx1]−A[idx1][idx2] · x[idx2])/A[idx1][idx1]
19: for i = (log2 n)− 2 to 0 do
20: for j = 2i+1 − 1 to n− 1, j = j + 2i+1 do
21: idx1 ← j − 2i

22: idx2 ← j + 2i

23: sum1 = f [idx1]
24: sum2 = f [idx2]
25: for k = 0 to n− 1 do
26: sum1 ← sum1 −A[idx1][k] · x[k]
27: sum2 ← sum2 −A[idx2][k] · x[k]
28: end for
29: x[idx1]← (sum1 +A[idx1][idx1] · x[idx1])/A[idx1][idx1]
30: x[idx2]← (sum2 +A[idx2][idx2] · x[idx2])/A[idx2][idx2]
31: end for
32: end for
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3. Parallelization of Elliptic Solver
Discretization of the elliptic equation using staggered grid is given by (7). In solving (7), there
is an expensive computational cost due to large number of grids. By rearranging (7) in term of
ψ, the linear tridiagonal system is obtained and is given by

b1 c1 0
a2 b2 c2

. . .
. . .

. . .

aNx−1 bNx−1 cNx−1

0 aNx bNx




ψ1

ψ2
...

ψNx−1

ψNx

 =


f1
f2
...

fNx−1

fNx

 (9)

where

ai = −
∗αi− 1

2

(∆x)2
, i = 2, · · · , Nx

b1 =

∗α 3
2

(∆x)2
+ ∗γ1

bi =

∗αi− 1
2

+ ∗αi+ 1
2

(∆x)2
+ ∗γi, i = 2, · · · , Nx − 1

bNx =

∗αNx− 1
2

(∆x)2
+ ∗γNx

ci = −
∗αi+ 1

2

(∆x)2
, i = 1, · · · , Nx − 1

fi =

∗βi+ 1
2
ui+ 1

2
− ∗βi− 1

2
ui− 1

2

∆x

Cyclic reduction algorithm is used to solve tridiagonal system in (9). This method uses
elimination step which is similar to Gaussian elimination. However, cyclic reduction can be
implemented into parallel program. In general, cyclic reduction works by eliminating variable
xi−1 and xi+1 from equation i by utilizing equations i − 1 and i + 1. By this elimination, the
number of equation is reduced to a half number of equations. In the new linear system, the
same elimination is also assigned.

There are two phases to solve tridiagonal system by using cyclic reduction algorithm. The
first phase is forward reduction. In each step of forward reduction, half of the variables in the
tridiagonal system is eliminated. The process is repeated until two equations with two unknown
variables are left. Here, two unknown variables with two linear equations is then solved by
simple elimination. Cyclic reduction algorithm to solve tridiagonal system Ax = f is given by
Algorithm 1. The detail of the algorithm can be found in [19]. Illustration to solve 8-element of
tridiagonal system using 4 threads is shown by Figure 1.

Implementation of cyclic reduction in OpenMP is described in Figure 2. At first, Nx/p
equations are distributed among the threads. Here, p denotes the number of threads used in
parallel program. Tridiagonal matrix A and right hand side f is assigned as shared variables in
forward reduction phase. Furthermore, in backward substitution, x,A, f , and Nx is considered
as shared variables. Note that, in the simulation, the tridiagonal system solver function is called
in each time step.

4. Results and Discussion
The computational time in solving the Boussinesq model numerically has become an important
part in the simulation of water waves. One of the numerical solution of the Boussinesq model



6

1234567890 ‘’“”

International Conference on Data and Information Science IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 971 (2018) 012036  doi :10.1088/1742-6596/971/1/012036

/*forward substitution*/

for(i=0; i<log2(Nx); i++){

n = pow(2,i+1);

# pragma omp parallel shared ( A, f, Nx ) \

private ( j, k, index1, index2, alpha, gamma )

{

# pragma omp for

for(j=pow(2,i+1)-1;j<Nx;j=j+n){

...

}

}

}

/*backward substitution*/

...

for(i=log2(Nx)-2;i>=0;i--){

n = pow(2,i+1);

# pragma omp parallel shared ( x, A, f, Nx ) \

private ( j, k, index1, index2, sum1, sum2 )

{

# pragma omp for

for(j=pow(2,i+1)-1;j<Nx;j=j+n){

...

# pragma omp critical

for(k=0;k<Nx;k++){

...

}

...

}

}

}

Figure 2. Parallel implementation of cyclic reduction algorithm in OpenMP.

that can be optimized its computational time is elliptic solver. As described in Section 3, the
numerical solution of elliptic equation is in the form of tridiagonal system. In this case, the
cyclic reduction algorithm is used to solve the tridiagonal system. The numerical experiment
is conducted in personal computer with specification: Intel Xeon CPU E3-1230 v5 @3.4 GHz,
16 GB of RAM, and 64-bit OS type.

Performance of cyclic reduction algorithm implemented in OpenMP parallel architecture
is evaluated. Two test cases, i.e. solitary and standing wave, are employed to measure the
performance of parallel program. The benefit of parallel program is measured by the quantity
of speedup and efficiency. The speedup represents the comparison of execution time between
parallel program (multiprocessor) relative to sequential program (single processor). The speedup
Sp(n) is defined as

Sp(n) =
T ∗(n)

Tp(n)
,

where T ∗(n) and Tp(n) are execution time of sequential and parallel program with size n,
respectively. Here, p is the number of threads used to solve the problem. Moreover, the efficiency
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Figure 3. Numerical vs analytical
solution for solitary wave.
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Table 1. Execution time of sequential program (1 thread) and parallel program (2, 4, and 8
threads) for Test Case 1.

# threads
Execution time (in seconds)

Nx = 28 Nx = 29 Nx = 210 Nx = 211 Nx = 212 Nx = 213 Nx = 214

1 0.57 5.10 17.71 74.29 273.30 1032.00 4201.60
2 0.89 4.55 13.93 49.00 185.11 694.00 2755.75
4 1.42 5.04 16.25 43.76 150.29 538.08 2141.17
8 1.38 6.21 16.12 47.13 137.23 504.02 2026.88

of a parallel program can be expressed as

Ep(n) =
Sp(n)

p
.

The efficiency expresses processor utilization of parallel program. In other words, it measures
the fraction of time for which a processor is usefully exploited.

4.1. Test Case 1: Solitary wave
In this test case, a solitary wave is considered as initial condition of the Boussinesq model. Let
Ω = [−512, 512]m be the domain of the simulation. The domain is discretized in to finite number
of grids. To measure performance of the parallel program, the number of grids is varied from
28 to 214. Moreover, time step used in this simulation is ∆t = 0.01s with final time is 10s. The
initial condition for solitary wave is given by

η(x, 0) = 2A0 sech2

(√
3A0

4h20(h0 +A0)
x

)
,

where A0 = 1 and h0 = 10.
Numerical solution of 1D Boussinesq model with solitary wave as initial condition is depicted

in Figure 3. From the figure, it can be seen that the numerical solution shows a good agreement
with the analytical solution. Table 1 displays the execution time of sequential and parallel
program of Test Case 1 for various number of grids. Table 1 was obtained by executing the
parallel program for 1, 2, 4, and 8 threads. When executing the parallel program, there was no
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Table 2. Execution time of sequential program (1 thread) and parallel program (2, 4, and 8
threads) for Test Case 2.

# threads
Execution time (in seconds)

Nx = 28 Nx = 29 Nx = 210 Nx = 211 Nx = 212 Nx = 213 Nx = 214

1 1.28 10.13 79.41 600.26 3991.28 22671.6 175409
2 1.42 9.33 59.17 421.15 2968.81 15616.4 119344
4 1.77 9.78 54.66 349.93 2569.05 12339.6 109587
8 1.85 9.75 53.79 351.55 2528.66 12181.0 104278

any program that runs in the computer so that each scenario has the same treatment. It can be
seen that the execution time of the sequential program is faster than the parallel program for
Nx = 28 and Nx = 29. Furthermore, The execution time of parallel program is faster than the
sequential program if the number of grids is more than 210.

The speedup of parallel program for Test Case 1 by using 2, 4, 8 threads can be seen in
Figure 5. It can be seen that the speedup of parallel program grows sublinearly with respect to
number of grids used. From the figure, it can be revealed that the speedup more than 1 if the
number of grids is more than 210. It means that the parallel program is efficient if Nx ≥ 210.
However, the speedup for Nx greater than 212 does not change significantly. The speedup by
using 2, 4, and 8 threads are around 1.5, 1.9, and 2.0, respectively. However, the best speedup
for solitary wave test case is 2.07 which is executed in 8 threads and using 214 of grids.

Figure 6 shows efficiency of parallel program for Test Case 1. It can be seen that parallel
program by using 2 threads is more efficient than 4 and 8 threads. The highest efficiency is
about 76.2% and is achieved when the parallel program is using 2 threads.

4.2. Test Case 2: Standing Wave
Initial condition for the second test case is considered as standing wave. The initial condition
of standing wave is given by

η(x, 0) = 2A0 cos
( π

20
x
)
,

where A0 = 0.05. The numerical domain of standing wave simulation is given by Ω = [0, 20]m.
Similar to Test Case 1, the standing wave simulation also uses various of number of grids
from Nx = 28 to Nx = 214. The final time of the simulation is also 10 seconds. However,
in the standing wave simulation, the time step ∆t follows the number of grids that used in
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Figure 8. Efficiency of parallel
program for Test Case 2.

the simulation. The more number of grids, the smaller time step used in the simulation. As
consequence, the number of time iteration becomes difference in each number of grids used.

Numerical result of 1D Boussinesq model with standing wave against its analytical solution
is shown by Figure 4. It can be revealed that numerical solution of standing wave shows good
agreement with the analytical solution. Table 2 shows execution time of sequential and parallel
program for Nx = 28 to Nx = 214. From this table, it can be seen that the execution time of
parallel program is faster than the sequential program if Nx ≥ 29. Speedup and efficiency of
parallel program for Test Case 2 are presented in Figure 7 and Figure 8, respectively. It can be
seen that the best speedup is 1.86 which is achieved for 8 threads and Nx = 213. The highest
of efficiency is achieved for 2 threads and is about 73.5%. Moreover, the efficiency for 4 and 8
threads with Nx = 213 are 45.9% and 23.2%, respectively.

5. Conclusion
Parallelization of elliptic solver for solving 1D Boussinesq model has been successfully conducted.
Cyclic reduction algorithm has been implemented in parallel program and executed on multicore
processors with shared memory architectures using OpenMP. The best speedup of solitary and
standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively,
which is executed by using 8 threads. By the numerical experiment, it can be concluded that
the speedup does not change significantly if the number of grids is greater than 212. Moreover,
the efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases,
respectively.
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